
SUSTECH — ARTIFICIAL INTELLIGENCE, PROJECT CARP, 11/27/2022 1

Path-Scanning Algorithm for the Capacitated Arc
Routing Problem

Feng Chenchen, 12011914 CSE, Southern University of Science and Technology

Abstract— The Capacitated Arc Routing Problem (CARP)
is a NP-hard combinatorial optimization problem. When
given an undirected graph, the objective need to find a
minimum cost set of tours that services a subset of edges
with positive demand under capacity constraints. In this
paper, path-scanning algorithm with local searching func-
tion is implemented based on Python to solve this problem.
Based on path-scanning as main framework, the algorithm
adopts random path scanning and flip to solve the optimal
solutions of NP-hard problems.

Index Terms— capacitated arc routing problem; path-
scanning; local search; order crossover; string manipula-
tion;

I. INTRODUCTION

THE Capacitated Arc Routing Problem applies to those
edges of a given connected graph that need service. There

is a fleet that starts at some point in the network, and all the
vehicles in the fleet are the same. Each side must be provided
by one vehicle, and the service must be completed at once. All
sides are allowed to be passed as many times as desired. Each
vehicle starts from the parking lot and returns to the starting
point after the service. You want to find the shortest possible
path to complete all the services.

The arc path problem can be traced back to Euler’s seven-
hole bridge problem in 1936, and the classic arc path problem
in China is the Chinese post road problem proposed by
Professor Guan Meigu (1962), which requires the postman
to traverse each side of the undirected graph at least once to
find the minimum cost. The arc path problem can be roughly
divided into three categories: Chinese post road problem, rural
post road problem, capacitated arc routing problem. In this
report, we study the capacitated arc routing problem.

CARP is a NP-hard problem, which was first proposed by
Golden (1981), and a large amount of literature is based on this
problem. Since Goldeng proposed it in 1981, CARP has been
widely applied in daily life, especially in municipal services,
such as road sprinkler path planning, garbage recovery vehicle
path planning, road de-icing vehicle path planning, and school
bus transfer path problems.

To characterize the path-scanning algorithm, We can char-
acterize it in terms of six rules when multiple tasks are the
closest to the end of current path.

Rule 1: Maximize the distance from the task to the depot.
Rule 2: Minimize the distance from the task to the depot.
Rule 3: Maximize demand(t)/cost(t), where demand(t) and

cost(t) are demand and distance cost of task t.

Rule 4: Minimize demand(t)/cost(t), where demand(t) and
cost(t) are demand and distance cost of task t.

Rule 5: Use rule 1 if the vehicle is less than half- full,
otherwise use rule 2.

Rule 6: Select a node connected to it randomly.
As for the practical implications of carp, I think it can

be applied to mail route planning or urban design planning.
CARP was developed to solve the route problem of choosing
the shortest route to send or dispatch all mail, so it makes
sense to apply it to route planning. I want to talk mainly
about applying it to urban planning. The essence of a city is
the organic combination of many functions, such as schools,
hospitals, shopping malls, hotels and so on. We can give
different buildings different demand weights, and find the best
geographical location of different buildings by using CARP. So
as to facilitate the daily travel of citizens as much as possible.

For this project, my idea is to apply the graph theory
knowledge I have learned into reality. Although we have
learned a lot of knowledge in the theory class, we have few
opportunities to realize it. With the help of this assignment, I
can apply the knowledge I have learned to solve the practical
problems we often encounter in real life, which I think is quite
meaningful.

II. PRELIMINARY

The problem can be formulated as a Minimize problem,
which is specified by a tuple (I , ce, δ(S), E(S), δR(S),
ER(S), even, xe, ye). The goal of the problem is to minimize
the cost.
Minimize ∑

p∈I

∑
e∈R

cexe +
∑
p∈I

∑
e∈E

ceye

s.t. ∑
p∈I

xe = 1 ∀e ∈ R

∑
e∈R

dexe = 1 ∀p ∈ I

xp(δR(S)) + yp(δ(S)) ≥ 2xf ∀p ∈ I

xp(δR(S)) + yp(δ(S)) = even ∀p ∈ I

xE ∈ {0, 1} ye >= 0



2 SUSTECH — ARTIFICIAL INTELLIGENCE, PROJECT CARP, 11/27/2022

TABLE I
PARAMETER INTERPRETATION IN THE FORMULATION

Symbol Meaning
I = 1, 2, ...,K set of vehicles
ce the cost of edge e which is passed
δ(S) subset of edge, one vertice in V − S, another vertice in

S⊆V
E(S) subset of edge, both of vertices in S⊆V
δR(S) subset of demand edge, one vertice in V − S, another

vertice in S⊆V
ER(S) subset of demand edge, both of vertices in S⊆V
even a positive even number
xe two element variable, when serving edge e, it’s 1, else 0
ye number of times passed edge e but not served

III. METHODOLOG

A. General workflow

The proposed method divides into steps 1,2 and 3, each
involving dijkstra algorithm, path-scanning algorithm and flip.
After obtaining qualified paths through path-scanning, the path
distance of these paths is calculated. If the path distance is less
than 1.05 times of the shortest path, the path distance is flipped
and recalculated. If the path distance is less than the shortest
path, the shortest path is updated.

B. Detailed algorithm design

1) Dijkstra: This algorithm mainly calculates the distance
between each vertex in the graph and saves it as a two-
dimensional array for use in path-scanning algorithm.

Algorithm 1 Dijkstra(G,w,s)
Initialize-Single-Source(G,s)
S = ∅
Q = G.V
repeat

u = Extract-Min(Q)
S = S ∪ u
for each vertexv ∈ G.Adj[u] do

Relax(u, v, w)
end for

until Q = ∅

2) Path Scanning: Every route starts from the depot. Let
Sbe the demand side set, which is closest to the end of the
current node, has not been served, and does not exceed the
capacity of the current route. If Sis empty, the shortest path
found by dijkstra is used to return to the repository. If Sis
not empty, the required edge is randomly selected in S or
according to the five rules as the next edge of the route to
be served, and the current node is updated to the end of the
selected edge.

rule 1:maximize the distance from the task to the depot.
rule 2:minimize the distance from the task to the depot.
rule 3:maximize the term dem(t)/sc(t), where dem(t) and

sc(t) are demand and serving cost of task t, respectively.
rule 4:minimize the term dem(t)/sc(t), where dem(t) and

sc(t) are demand and serving cost of task t, respectively.

rule 5:use rule 1 if the vehicle is less than half- full,
otherwise use rule 2.

In my implementation, I set the rule 2 as the highest priority.
Then, if the two required edge have the same distance, I
will randomly choose one edge to go. Because once I choose
to follow only one rule, my path choice is dead, and many
potentially better paths will not be taken.

At the same time, I am not completely random. I will
assign good or bad values to different edges according to their
distance from the current node. Good edges have a higher
probability of being selected. This method not only enables
me to have complete path selection, but also enhances the
availability of the randomly generated path, which can greatly
improve the probability of finding the optimal solution in the
random path.

Algorithm 2 Random Path-Scanning
k ← 0
copy all required arcs in a list free
repeat
k ← k + 1;Rk ← ø; load(k), cost(k)← 0; i← 1
repeat
d←∞
for each u ∈ free|load(k) + 1u ≤ Q do

if di,beg(u) < d then
d← di,beg(u)
u← u

else if di,beg(u) = dand better(u, u, rule) then
u← u

end if
end for
add u at the end of route Rk

remove arc u and its ooposite u+m from free
load(k)← load(k) + q

u

cost(k)← cost(k) + d+ cu
until free = ø or (d =∞)
cost(k)← cost(k) + di1

until free = ø

3) Flip: To simplify the problem, we can change the path-
handling problem to a string-handling problem, because ulti-
mately what we want is the string representing the path and
the cost of the path, so we can directly manipulate the string
representing the path. What flip does is treat the path as a
string, flip the edge (a, b) to the edge (b, a), change the string,
and then calculate the length of the corresponding path from
the string. If the cost is less, update the minimum path string
to the string after the flip, if the cost is more, discard the flip
updated string.

In order to save time, I set a threshold 1.05 and only flip a
string whose path cost is less than the threshold. In doing so,
I saved a lot of time in a random path that would have never
been possible to generate a minimum path cost through flip.



FENG CHENCHEN, AN EVOLUTIONARY ALGORITHM WITH LOCAL SEARCH FOR THE CAPACITATED ARC ROUTING PROBLEM 3

Algorithm 3 Flip(parts)
ori score = cal cost(parts)
for each part ∈ parts do
i = 0
repeat

swap parts[i] and parts[i+1]
if cal cost(parts) ≥ ori score then

back swap(parts[i], parts[i+1])
continue

end if
i+ = 2

until i ≥ len(parts)
end for

4) Local Search: Apart from recombination, local search
plays an important role in any hybrid or memetic forms.
Firstly, the child C1 is improved using a local search with
a probability rLS . Three move operators have been used to
perturb the solution, i.e., single insertion, double insertion,
and swap. The best chromosome C2 with the shortest distance
is the outcome of this phase. It is very important to highlight
that if the top Q is still the same after a generation, a roulette
wheel selection is used to identify C1.

The best result S from splitting C1 identified from phase
1 is now improved further using a larger search domain,
wherein tasks of two vehicle trips are redistributed among
them using five rules of path scanning respectively resulting in
five candidate part solutions. The best candidate part-solution
is inserted into the rest of the S to result in the new solution
SC . Since there are C2 N combinations possible, the following
condition is enforced, i.e., if I:N!/2(N-2)! ≤ 50,ltimes = I, else
ltimes = 50, where ltimes denotes the number of attempts

Algorithm 4 Local Search Algorithm
Perform singleinsertion operator to C1 =⇒ C1

1

Perform doubleinsertion operator to C1 =⇒ C2
1

Perform swap operator to C1 =⇒ C3
1

Keep the best one of C1
1 , C

2
1 and C3

1 =⇒ C2

Apply split method to of C2 =⇒S = (S1, S2, ..., SN )
ltimes = min[I,50]
for i=1 to ltimes do

Apply path-scanning to each pair of solutions to generate
five different part solutions
Select the best one of them =⇒ SC

Combine SC with the rest solutions =⇒ C3

Apply split method to evaluate C3

Update the solution if C3 is better than C2, C3 =⇒Cnew

end for
if FoundCnew = true then

Apply local search again on Cnew

end if

C. Analysis

To simplify the path-finding problem, I converted it to a
string problem. In this problem, I looked for the path through
the path-scanning algorithm and converted it into string output.
Then the string is used as input and the corresponding distance
cost is calculated by cal cost algorithm.

At this point, it’s easy to continue optimizing the path. We
only need to conduct operation and mutation of the string
generated by path-scanning, then calculate the path cost of the
new string through cal cost, and update the answer if the cost
is smaller. At this point, the subsequent optimization becomes
a string processing issue.

IV. EXPERIMENT

A. Setup

At first I take to sample data the teacher gived us as a my
set, including egl-e1-A, egl-s1-A, gdb1, gdb10, val1A, val4A,
val7A sample files. These files contain both small and large
pictures, of which the optimal solution of the small picture is
more than 200, and the optimal solution of the large picture
is more than 5,000. After that, I will present my performance
on this data set in tabular form.

Later, I found the data set of the paper on Github, including
all the bccm, eglese, gdb and kshs data sets. However, because
the format of these data sets was different from the format
required by the project, I selected only a few files and modified
the format, and tested my code as input, and the effect was
OK.

data set source: https://github.com/edydfang/SUSTech CS3
03 Artificial Intelligence/tree/main/Lab02 CARP/datasets

• Software:Pycharm 2022.1
• Hardware:Intel(R) Core(TM) i7-10710U CPU @

1.10GHZ 1.61GHZ
• Python:3.10
• Numpy:1.21.5

B. Result

For the NP-Hard problem of finding the optimal path in
finite time, the most important thing is undoubtedly the size
of time consumption and path cost.

In order to test the maximum possibility of a good path
when the random probability is equal to what, I tested the
shortest path found with different probabilities under the
condition of 60s and the picture is gdb10.

Through the experiment, I found that the threshold value of
randomly taking other paths was 0.3, which was in line with
my expectation. Because it has to be less than 0.5, it is more
likely to choose a solution with higher probability (the node
closest to the current node) when choosing a path. Then the
threshold should not be too small, so that the path selection
is more likely to take paths that have not been taken.

Another interesting point is that I only flip paths that are
less than a certain multiple of the minimum path cost. It is
like the survival of the fittest in nature, where only the good
individuals have a chance of inheriting their genes and the
poor ones have no chance of inheriting them. Plugging into



4 SUSTECH — ARTIFICIAL INTELLIGENCE, PROJECT CARP, 11/27/2022

TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT DATA SETS

File 10s
Quality
Quality
Diff

30s
Quality
Diff

60s
Quality
Diff

90s
Quality
Diff

Optimal
Solution

egl-e1-A 3959
11.58%

3931
10.79 %

3852
8.56%

3848
8.45%

3548

egl-s1-A 6029
20.12%

6070
20.96%

5873
17.03%

5917
17.91%

5018

gdb1 316
0%

316
0%

316
0%

316
0%

316

gdb10 289
5.09%

283
2.90%

283
0%

275
0%

275

val1A 184
6.35%

178
2.89%

179
2.89%

174
0.57%

173

val4A 431
7.75%

423
5.75%

421
5.25%

420
5.00%

400

val7A 304
9.74%

304
9.74%

294
6.13%

297
6.40%

277

TABLE III
EXPERIMENTAL RESULTS OF DIFFERENT RANDOM THRESHOLDS

tests threshold=0.2 threshold=0.3 threshold=0.4 threshold=0.5
test1 284 285 283 289
test2 289 283 284 289
test3 283 275 283 277
test4 275 283 285 283
test5 283 285 285 284
test6 284 285 283 283
test7 285 277 283 285
average 283.29 281.85 283.71 284.28

the project means that only the path that costs less will have
a chance to flip, rather than letting the path that costs more
take up the flip’s time. This is given because after a path is
flipped, the path cost is rarely dramatically reduced. Setting
this coefficient can effectively reduce the useless path turnover
and save valuable time to solve this problem in a limited time.

C. Analysis
I think my algorithm performs well on small graphs and

can be further optimized on large graphs. The overall results
barely met my expectations, but due to time constraints, I
didn’t have time to inherit and mutate the path string. In
the future, for example, in the winter vacation, I can use the
genetic knowledge learned in the experiment class to inherit
and mutate the path string.

In the previous section, I have analyzed the effects of
different parameters on the experimental results, so I will not
repeat the details here.

Although my theoretical experiment is O(n3), my code is
still fast. I think the first is to remove some of the meaningless
parts of the code, such as flipping paths that cost much. It’s
also partly because I use break and continue in the loop, so it
doesn’t always execute.

V. CONCLUSION

A. Characteristics and Realization of Expectation
My algorithm has a good effect on solving the problem of

small graph. The optimal solution of the graph can be found
after 60 seconds of operation, or the optimal solution is usually

less than 5% larger than the optimal solution of the graph.
However, in the large graph, the performance is not so good.
The optimal solution found after 60 seconds is often 10 to 15
percent larger than the optimal solution of the graph. I think
this is because the graph is large and it takes time to find a
complete path, so the number of paths that can be found within
the effective time is much smaller than that of the small graph.

I think the experimental results barely meet my expecta-
tions, but due to the lack of time, there are still many areas
and details that can be further improved. However, I was happy
to see that the code I wrote was finally able to solve NP-Hard
problems that could not be solved manually. The effort paid
off.

B. Further Improvement
Randomness can be improved by reducing the probability

that a passed edge will pass again. There’s a higher probability
of traversing different combinations of paths in the graph.

Genetic algorithm can be added to the path string for
inheritance and variation. So the problem is just like the string
generation problem, the only difference is that you need to add
a string legitimacy check.

REFERENCES

[1] José M. Belenguer, Benavent E (2003) A cutting plane algorithm for
the capacitated arc routing problem. Computers Operations Research
30(5):705-728.

[2] Baldacci R , Maniezzo V (2006) Exact methods based on node-routing
formulations for undirected arc-routing problems. Networks 47(1):52-60.

[3] Diego Pecin, Eduardo Uchoa (2019) Comparative Analysis of Capacitated
Arc Routing Formulations for Designing a New Branch-Cut-and-Price
Algorithm. Transportation Science 53(6):1673-1694.

[4] Hertz, A., Laporte, G., and Mittaz, M. (2000). A tabu search heuristic for
the capacitated arc routing problem. Operations research, 48(1):129–135.

[5] Polacek, M., Doerner, K. F., Hartl, R. F., and Maniezzo, V. (2008). A
variable neighborhood search for the capacitated arc routing problem
with intermediate facilities. Journal of Heuristics, 14(5):405–423.

[6] Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2010). An
improved ant colony optimization based algorithm for the capacitated
arc routing problem. Transportation Research Part B: Methodological,
44(2):246–266.

[7] Chen, L., Gendreau, M., H‘a, M. H., and Langevin, A. (2016a). A robust
optimization approach for the road network daily maintenance routing
problem with uncertain service time. Transportation research part E:
logistics and transportation review, 85:40–51.

[8] Laporte G . Arc Routing: Problems, Methods, and Applications[M].
Society for Industrial and Applied Mathematics, 2015.

[9] Belenguer J M , Benavent E . The Capacitated Arc Routing Problem:
Valid Inequalities and Facets[J]. Computational Optimization and Appli-
cations, 1998, 10(2):165-187.


